Dependence of histone modifications and gene expression on DNA hypermethylation in cancer.

نویسندگان

  • Jill A Fahrner
  • Sayaka Eguchi
  • James G Herman
  • Stephen B Baylin
چکیده

We examined the relationship between aberrant DNA hypermethylation and key histone code components at a hypermethylated, silenced tumor suppressor gene promoter in human cancer. In lower eukaryotes, methylated H3-lysine 9 (methyl-H3-K9) determines DNA methylation and correlates with repressed gene transcription. Here we show that a zone of deacetylated histone H3 plus methyl-H3-K9 surrounds a hypermethylated, silenced hMLH1 promoter, which, when unmethylated and active, is embedded in methyl-H3-K4 and acetylated H3. Inhibiting DNA methyltransferases, but not histone deacetylases, leads first to promoter demethylation, second to gene reexpression, and finally to complete histone code reversal. Our findings suggest a new paradigm-DNA methylation may directly, or indirectly by inhibiting transcription, maintain key repressive elements of the histone code at a hypermethylated gene promoter in cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اپی‌ژنتیک سرطان پستان: مقاله مروری

Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...

متن کامل

DNA methylation of tumor suppressor genes in hepatocellular carcinoma

The basic unit of chromatin is a nucleosome included an octamer of the four core histones and 147 base pairs of DNA. Posttranslational histones modifications affect chromatin structure resulting in gene expression changes. CpG islands hypermethylation within the gene promoter regions and the deacetylation of histone proteins are the most common epigenetic modifications. The aberrant patterns of...

متن کامل

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...

متن کامل

Effect of 5- azacytidine (5-aza-CR on the expression of DNMT1, DNMT3A, DNMT3B, p14ARF, p16INK4a, and p15INK4b, cell growth inhibition and apoptosis induction lung cancer A549 cell line

Background and aim: Lung cancer is one of the most leading causes of cancer death in males and females and the second leading cause of cancer death. Epigenetic alterations, including DNA hypermethylation, histone deacetylation, and miRNAs lead to the silencing of tumor suppressor genes (TSGs) resulting in tumorigenesis. This change has been reported in various cancers. The activity of DNA meth...

متن کامل

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus

The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 24  شماره 

صفحات  -

تاریخ انتشار 2002